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A subgrid-scale model based on a truncated exact series expansion for Gaussian
filtered products is considered for the incompressible scalar advection–diffusion
equation. This model can be interpreted as a tensor diffusivity term proportional to
the rate-of-strain tensor of the large-scale filtered velocity field. To control negative
diffusion in the stretching directions, a Lagrangian method is used. The scalar field is
represented in terms of a collection of anisotropic or axisymmetric Gaussian particles.
An expansion in Hermite polynomials leads to equations of motion for particle
velocity and shape based on a weighted average. A new accurate remeshing method,
taking advantage of the properties of the subgrid model, is proposed and tested.
A stagnation flow is used to demonstrate several theoretical and numerical aspects
of the model. Better agreement with filtered DNS data is obtained than with the
Smagorinsky subgrid model for a 2D time-dependent sinusoidal flow, which yields
chaotic advection. The use of anisotropic particles leads to slightly more accurate
results than the use of axisymmetric particles. Computational efficiency, however,
makes the latter therefore the preferred choice.c© 2001 Academic Press
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1. INTRODUCTION

The scalar advection–diffusion equation describes the motion of a scalar quantity under
the advection of a velocity field and diffusion. For small diffusivity values, a large com-
putational effort is required to account for both the large- and small-scale structures. To
reduce this effort a filtering operation may be used to obtain an equation for the large-scale
structures in which the effect of the small scales has to be modeled. These simulations are
known as large eddy simulations (LES) and the models as subgrid models.

The tensor-diffusivity subgrid model will be the focus of this article. This model was
derived independently by Bedford and Yeo [1, 2] and Leonard [3] after using a Gaussian
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2 MOELEKER AND LEONARD

filter and expressing the filtered products in an infinite sum of known filtered quantities.
Retaining the first two terms in this expansion gives the subgrid model. The method is
ill-conditioned so that some form of regularization is required.

A particle method that provides a suitable regularization is used to numerically solve the
model equation. So-called anisotropic Gaussian particles will be used resulting in equa-
tions that have higher order accuracy compared to the widely used axisymmetric Gaussian
particles. The anisotropic particles will have nine degrees of freedom, three for the location
in space and the six remaining ones for the size and orientation. To assess the benefits of a
higher order scheme, axisymmetric particles have been used as well.

To numerically account for the molecular diffusion of a scalar or the diffusion of vorticity
due to viscous effects, a variety of methods have been used by different researchers. For
example, in the random-walk method a random displacement is added to the motion of
each particle [4]. The core spreading method increases the size of the Gaussian particles
over time to simulate the effect of diffusion [5]; one particular advantage is that it solves
the diffusive part of the equation exactly. However, Greengard [6] showed that the core
spreading method approximates the wrong equation in the limit of an infinite number of
particles.

Recently, Rossi [7, 8] revamped the use of the core spreading method for the viscous
vorticity equation by introducing a splitting and merging scheme for the axisymmetric
Gaussian particles. He showed that by splitting the particles and thus controlling the core
size of the particles, convergence of the vorticity equation is obtained in the limit of an
infinite number of particles and splitting the particles continuously. The merging scheme
he employed was only used to keep the total number of particles reasonable. In the present
work the core expansion method has been used as well and a remeshing scheme has been
implemented to keep the core size of the particles within certain bounds.

This article is composed as follows. Section 2 introduces the tensor-diffusivity model.
We elaborate on the particle method in Section 3.1 and on the remeshing procedure in
Section 3.2. Section 4 deals with several test cases to illustrate the method and demonstrate
several ideas. Three appendices are attached to give several mathematical derivations in
more detail.

2. TENSOR-DIFFUSIVITY SUBGRID MODEL

The transport of a passive scalar quantityψ(x, t) in an incompressible velocity field
u(x, t) is governed by

∂ψ

∂t
+ u ·∇ψ = κ∇2ψ, (1)

whereκ is the diffusivity coefficient. Consider a spatial Gaussian filter with characteristic
length scaleσ and spatial dimensiond, given by

F(x) = 1

(σ
√
π)d

exp

(
−|x|

2

σ 2

)
. (2)

Convolving this filter with (1) gives the filtered advection–diffusion equation

∂ψ̂

∂t
+∇ · ûψ = κ∇2ψ̂, (3)
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where convolved or filtered quantities are indicated by a hat. Under the assumption that
bothψ(x, t) andu(x, t) are continuous and differentiable, the unknown filtered function
ûψ can be expressed in known quantities as

ûψ(x, t) =
∞∑

n=0

1

n!

(
σ 2

2

)n
∂nû

∂xi1∂xi2 · · · ∂xin

∂nψ̂

∂xi1∂xi2 · · · ∂xin

, (4)

where Einstein’s summation convention is used. This result was independently established
by Bedford and Yeo [1, 2] and Leonard [3]. Leonard’s derivation uses an expansion in
Hermite polynomials and makes use of their properties. See Appendix A for more details.
Upon substitution of (4) in (3) and retaining only the first two terms in the infinite expansion,
we can approximate (3) as

∂ψ̂

∂t
+ û ·∇ψ̂ = κ∇2ψ̂ − σ

2

2
Ŝi j

∂2ψ̂

∂xi ∂xj
, (5)

where the strain rate tensorSi j = 1
2(

∂ui
∂xj
+ ∂u j

∂xi
) has been introduced. The extra term can

be interpreted as an added diffusivity with an effective diffusivity− σ 2

2 Ŝi j , which depends
on the spatial direction (hence, the name tensor-diffusivity subgrid model). Since trace
(Ŝ) =∇ · û = 0, at least one of the eigenvalues of the strain rate tensor has to be greater
than zero, indicative of a direction where the subgrid model acts as negative diffusion. Say
λ1 is the largest eigenvalue ofŜ in the directionx1; then the total effective diffusivity in this
direction is given by− σ 2

2 λ1+ κ, which results in negative diffusion forλ1>
2κ
σ 2 .

It was shown by Caratiet al. [9] that the use of spatial filters other than Gaussian results
in doubly infinite expansions. However, the leading two terms in such an expansion are the
same, except for a multiplicative constant, for a large class of different filters including the
top-hat filter and all discrete filters. This implies that all these filters result in the tensor-
diffusivity subgrid model given above.

It is desirable that a subgrid model does not depend on the frame of reference an observer
chooses, as nature is unaware of our choices. In mathematical terms, this is reflected by
proper transformation properties between different frames of reference [10]. An equation is
called frame indifferent if it has these properties. Examples are the Navier–Stokes equation
and the scalar advection–diffusion equation. It is desirable for subgrid-scale models to satisfy
these transformations as well. It was shown by Fureby [11] that only filtering operators
with rotational symmetry, among these the Gaussian filter, will preserve material frame
indifference. Consider the transformation between a starred and unstarred coordinate system
given by a time-dependent rotationQ (with QT = Q−1) and relative velocityc,

x∗i = Qi j (t)xj + ci (t). (6)

After applying this transformation to the tensor-diffusivity subgrid model, one can show
that the models in the starred and unstarred system are related by

−σ
2

2
Ŝ∗i j

∂2ψ̂∗

∂x∗i ∂x∗j
= −σ

2

2
Ŝi j

∂2ψ̂

∂xi ∂xj
, (7)

which establishes material frame indifference.
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To give some insight into the effect of the extra term in (5), consider the following example.
Assume there is (approximately) a uniform velocity field in the principalx1 direction given
by u1 = λ1x1 and set the diffusivityκ equal to zero. A simple wave in thex1 direction
is used as an initial condition,̂ψ(x, 0) = eikx1, wherek is the wave number. The filtered
advection–diffusion equation (5) simplifies to

∂ψ̂

∂t
+ λ1x1

∂ψ̂

∂x1
= −σ

2

2
λ1
∂2ψ̂

∂x2
1

. (8)

It is straightforward to verify thatψ̂ = eik exp(−λ1t)x1 exp[σ 2k2(1− exp(−2λ1t))/4] is a
solution. The wave number of this solution isk exp(−λ1t), which decreases in time due
to stretching. The amplitude of the wave is given by exp[σ 2k2(1− exp(−2λ1t))/4] and
increases in time. The initial rate of increase becomes arbitrarily large ask→∞. The
addition of molecular diffusion avoids this undesirable behavior only ifκ > σ 2

2 λ1.
Additional understanding comes from the evolution equation for the root mean square of

the scalar fieldψ̃(t),

dψ̃2

dt
= −2κ

∫
Ä

(∇ψ̂)2 dx+ σ 2
∫
Ä

Ŝi j
∂ψ̂

∂xi

∂ψ̂

∂xj
dx. (9)

By using the principal coordinate system ofS, one can ascertain that the second term on the
right-hand side can be both positive and negative, implying that the subgrid model allows
for backscatter.

On occasion mathematical models of physical processes lead to ill-posedness; see for
example Barenblattet al. [12] or Krasny [13]. Some form of regularization is required
to obtain a well-posed problem. Care needs to be taken in the choice of regularization,
since the results can depend strongly on the approach used. By filtering the advection–
diffusion equation (1), information about the high wave number components is lost. In
order to have the solution with the regularization approximating the solution of (5) closely,
we need a regularization that maintains control over the entire wave number spectrum.
Computations solving (5) directly using a spectral or finite difference method show that
growing instabilities are introduced. For the finite difference approach, an example will
be given in Section 4.2. Good results to regularize a finite difference method using the
tensor-diffusivity model for the momentum equation have been obtained by Leonard and
Winckelmans [14] by adding an extra dynamic eddy viscosity term. Our work will regularize
the problem by decomposing the scalar field into a collection of Lagrangian particles, each
of which are well behaved for large wave numbers.

3. NUMERICAL METHOD

3.1. Particle Method

As discussed in the previous section we use a particle method to numerically solve (5)
by approximating the scalar fieldψ(x, t) (dropping the hats) by a sum ofN anisotropic
Gaussian particles

ψ(x, t) =
N∑

k=1

ak
√

det(Mk)

(
√
πδk)d

exp

(
− (x− xk)

TMk(x− xk)

δ2
k

)
, (10)
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where each particlek is centered atxk andd is the spatial dimension of the problem. The
core size of each particle is given byδk and the amplitude byak. The positive definite matrix
Mk is called the shape function. Only the locationxk and the shape functionMk are assumed
to be functions of time. These particles were recently used by Rossi [15] in a viscous vortex
method. The Fourier transform of (10) is given by

F{ψ}(k, t) =
N∑

k=1

ak exp

(
−δ

2
kkTM−1

k k
4

)
ei k·xk , (11)

wherek is the wave number. This function appears to be well behaved for large wave
numbers as long asMk remains positive definite, giving us the desired control over all wave
numbers.

Equations for the time evolution of the shape functionMk and the locationxk are found
by substituting (10) in (5) and expanding each term in a series of Hermite polynomials.
An expansion in Hermite polynomials is used instead of the more commonly used Taylor
polynomials, as the former are in a more natural way connected to Gaussians. It is expected
that the contribution of the lower order terms in the expansion is most significant. By setting
the coefficients of the lower order terms in the expansion equal to zero, we obtain the desired
equations of motion. A detailed derivation of this procedure can be found in Appendix B.
The end result for the location of the particles is

dxk

dt
= ūk − σ

2

2
∇2u

k
, (12)

where an overline over an arbitrary functionf (x, t) is defined by

f̄ k(xk, t) =
√

det(Mk)

(
√
πδk)d

∫
Ä

f (x, t) exp

(
− (x− xk)

TMk(x− xk)

δ2
k

)
dx. (13)

The overline can be interpreted as a weighted average over the anisotropic Gaussian particle
k. Since this average depends on the particlek, two particles that occupy the same location
xk, but different shapesMk, can move in different spatial directions. For the time evolution
of the matrixMk, we find

dMk

dt
= −∇u

k
Mk −Mk∇u

kT − 4κ

δ2
k

MkMk + σ
2

δ2
k

Mk(∇u
k +∇u

kT
)Mk

+ σ 2

2

(
∇∇2u

k
Mk +Mk∇∇2u

kT)
. (14)

If we consider the next order coefficients in the expansion, we see that these areO(δ3
k) and

O(σ 2δk). Combined with the truncation error of the subgrid model (4),O(σ 4), the total
error isO(δ3

k, σ
2δk, σ

4).
To assess the benefits of using a higher order particle method and for comparison rea-

sons, we have also considered the widely used axisymmetric Gaussian particles, which are
obtained by settingMk equal to the identity matrix in (10). The core sizeδk is now assumed
to be a function of time, as is the locationxk. The governing equations can be derived in
a similar way using an expansion in Hermite polynomials or the equations for anisotropic
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Gaussian particles can be simplified using the constraint that the particles remain axisym-
metric for all time. Both derivations yield the same result. For the time evolution of the
location of the particles, we obtain (12) again and for the core sizeδk,

dδ2
k

dt
= 4κ + O

(
δ2

k, σ
2
)
. (15)

Note that we can use (15) only for small values ofσ andδk. Inaccuracies are introduced when
δk becomes larger, a problem of the core expansion method as shown by Greengard [6].

3.2. Remeshing

There are three main reasons which necessitate the remeshing of the scalar field or
splitting and merging of the particles every so often. First, we need to circumvent the
inherent problem of the core expansion method by keeping the effective core size of the
particles within limits, where the effective core size is defined asδk

λk,1
, whereλk,1 is the largest

eigenvalue ofMk. Second, to get a smooth scalar field, the overlap parameter, defined as
the ratio of the effective core sizeδk

λk,1
over the corresponding interparticle distanced, has

to be of order unity. Owing to straining, particles tend to move apart from each other in
some directions, thereby decreasing the overlap parameter and making a remesh necessary
to maintain a smooth scalar field. Finally, anisotropic particles can become very elliptical
also as the result of straining, which increases the numerical errors.

Assume that at timet , we want to replace all theN old particles with a set ofM new
identical axisymmetric particles with initial core sizeτ . The new set of particles is spread
out on a regular rectangular mesh with grid spacingh between neighboring particles in
each direction. The location of thel -th new particle is denoted byξl . The amplitudesbl ’s
of the new particles have to be chosen appropriately to minimize the error between the old
and the new scalar fields. Using an approximation based on a least-square-error method,
we were able to find the following explicit expressions for the unknown coefficientsbl ’s in
two dimensions:

bl =
N∑

k=1

akh2
√

det(Mk)

π

√(
δ2

k − λk,1τ 2
)(
δ2

k − λk,2τ 2
)

× exp

(
− (ξl − xk)

T
(
δ2

kMk + τ 2det(Mk)I
)
(ξl − xk)(

δ2
k − λk,1τ 2

)(
δ2

k − λk,2τ 2
) )

.

(16)

Here the eigenvalues of the shape matrixMk areλk,1 andλk,2. A derivation of this equation
(in one dimension) can be found in Appendix C. To get sensible results we need to satisfy

τ 2<
δ2

k
λk

for all k and both eigenvaluesλk. This puts an upper bound on the new core size of
the particles.

In all the computations presented in this paper, we set the new core sizeτ equal to the
initial core size(δk) at t = 0 to have the same core size of the particles initially and after
each remesh procedure. It then follows that all eigenvalues of the shape matrixMk for all
particlesk have to be less than unity(λk < 1) for this remeshing procedure to be applicable.
It can be shown theoretically that in the absence of the last term of (14), this requirement is
always met. In the presence of this term, numerical experiments show that if the influence
of the subgrid model is small (σ small) compared to the advection and diffusion terms,
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this requirement is met as well. The derivation of (16) in case of axisymmetric particles is
straightforward.

4. TEST CASES

4.1. Stagnation Flow

We will start with a simple problem for illustrative purposes. Consider a two-dimensional
stagnation flow given by the incompressible velocity componentsu = cx andv = −cy,
wherec is an arbitrary constant. Assume no molecular diffusivity (κ = 0) and consider
only one anisotropic particlek initially located atxk with initial shape matrixMk = I 2.

For this specific velocity field, the tensor-diffusivity subgrid model is exact and thus the
filtered advection–diffusion equation (5) is also. The (numerical) particle method using
anisotropic Gaussian particles is an exact solution to (5) as well and will be used to test
some basic features of the model and the numerical implementation.

Let us first solve the equation of motion for the anisotropic particles analytically. The
equation of motion for the location of the particle (12) reduces to

dxk

dt
= ūk = u(xk) =

(
cxk

−cyk

)
. (17)

Equation (14) for the shape matrixMk with elementsmi j can be reduced to

dm11

dt
= −2cm11+ 2σ 2

δ2
k

c
(
m2

11−m2
12

)
, (18a)

dm22

dt
= 2cm22+ 2σ 2

δ2
k

c
(
m2

12−m2
22

)
, (18b)

dm12

dt
= 2σ 2

δ2
k

cm12(m11−m22), (18c)

with the solution (using the initial conditionMk = I 2)

m11(t) = δ2
k/σ

2

1+ (δ2
k/σ

2− 1
)
e−2ct

, (19a)

m22(t) = δ2
k/σ

2

1+ (δ2
k/σ

2− 1
)
e2ct

, (19b)

m12(t) = 0, (19c)

which corresponds to the exact solution of the problem. Forδk < σ , the solution blows
up att = − 1

2c ln(1− δ2
k/σ

2), whereas forδk > σ , the solution will stay finite for all time.
In the unfiltered scalar field, the most singular structures are delta functions. Applying a
Gaussian filter with widthσ transforms these delta functions to Gaussians with widthσ .
The blowup of the solution forδk < σ is therefore not relevant to our applications, since
such Gaussians do not correspond to meaningful basis elements for the unfiltered field.

Four different test runs have been performed for the stagnation flow, numbered 1 through
4, all usingc = 1 andσ = 0.2. Each of these runs uses the fifth-order Cash–Karp Runge–
Kutta method with adaptive step size for error control as discussed in Section 16.2 of Press
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TABLE I

Test Data for the Stagnation Flow

Run Type of particles N δk δk/d

1 Anisotropic 1 0.50 n/a
2 Anisotropic 148 0.25 1.25
3 Axisymmetric 148 0.25 1.25
4 Anisotropic 148 0.15 0.75

et al. [16] to march forward in time. The initial condition is a Gaussian with core size
δk = 0.5 and amplitudea = 1 centered at(x, y) = (0, 2).

Table I gives information about each of the different runs. The first column gives the run
number and the second one the type of Gaussian particles that were used. Next, the total
number of particles(N) is listed and the core size of the particles att = 0. The last column
gives the overlap parameter at the start of the simulation. The first run represents the exact
initial condition with just one particle, whereas the other three runs use 148 particles on a
regular two-dimensional grid with gridspacingh = 0.2 to approximate the initial condition
of run 1. For runs 2 and 3, the overlap parameter is 1.25, and for run 4, it is 0.75, all leading
to smooth scalar fields. No remeshing scheme was used in any of these runs.

Run 1 will exhibit only a small time-stepping error, whereas run 2 has both a small time-
stepping and spatial discretization error. The errors for these two runs are small enough to
get very good agreement with the theoretical solution, as long as anisotropic particles are
used with core sizes larger thanσ . Define the aspect ratio for each particle as the largest
eigenvalue over the smallest eigenvalue ofMk. A large aspect ratio is indicative of particles
that are stretched a lot, which is undesirable from a numerical point of view. Sincem12 = 0
for all time, the aspect ratio is here equal tom22/m11. At t = 1, the aspect ratio for run 1
equals 23.26 and for run 2 it equals 4.79.

Figure 1 gives the comparison between runs 1, 2, and 3 att = 0.6. As stated before, the
anisotropic particles yield the exact theoretical result (except for small time-stepping and
spatial discretization errors). The results for runs 1 and 2 are virtually indistinguishable
while the solution using axisymmetric particles starts to show inaccuracies.

It was shown theoretically that if the core size of the particles is chosen smaller than the
filtering sizeσ , the solution will blow up in a finite time, as these small-core particles do

FIG. 1. Contourlines 0.1, 0.5, and 1.0 for runs 1 and 2 (solid–results are virtually identical) and 3 (dashed) at
t = 0.6.
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FIG. 2. Contourlines 0.1, 0.5, and 1.0 for run 4 att = 0.3.

not correspond to a realistic unfiltered field. Figure 2 illustrates this blowup for run 4 at
t = 0.3. It is interesting to note that the particles take on an elliptical shape oriented 90◦

from the direction one would expect. For the parameters given for run 4, the theoretical
results predict that the solution blows up att = 0.41, which also happens in the numerical
calculation.

4.2. 2D Flow

To show and test different aspects of the particle method and the tensor-diffusivity subgrid
model, we use the incompressible velocity field given by

(u
v

)
=
(

sin(x) sin(y)

cos(x) cos(y)+ ε sin(ωt)

)
, (20)

whereε is the amplitude andω is the frequency of a sinusoidal perturbation. We will use
ε = 0.5 andω = 1.0 in this section. Figure 3 shows the streamline pattern att = 0. As
an initial condition for the unfiltered scalar field, the Gaussian, exp{[(x − 0.3)2+ (y+
0.4)2]/ρ2}, has been used, whereρ = 0.5. The filtered initial condition is plotted in Fig. 4.
The contourlines are 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.5, just as in all
the contour plots in this section. The diffusivity constant has been set equal toκ = 0.001
for all computations in this section.

FIG. 3. Streamline pattern of (20) att = 0.
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FIG. 4. Initial Gaussian distribution centered at(0.3,−0.4).

To test the accuracy of the various schemes, we have computed a DNS solution using
a central second-order difference method to solve (1) directly. A regular equidistant grid
with a grid spacing of 0.016 was set up (800 by 800 grid points between−2π and 2π ).
The fourth-order Runge–Kutta method as discussed in Ferziger and Peric [17] was used to
integrate in time with time stepdt = 0.005. To compare this converged DNS solution with
the results of the LES, this solution has been filtered usingσ = 0.15. The left column of
Fig. 5 shows contour plots for the filtered DNS solution at timest = 3, 6, and 9.

For purposes of comparison, a finite difference computation using the Smagorinsky sub-
grid model (with a gridspacing 0.016 and a step size 0.005) has been made. This simulation
used the same Gaussian filter withσ = 0.15 as the Lagrangian computations, thus lead-
ing to identical initial scalar fields. Results are given in the right column of Fig. 5 for a
Smagorinsky constant ofCs = 0.2 and a turbulent Prandtl number Prt = 1. The use of other
constants was investigated, butCs = 0.2 gave best results. By comparison with the filtered
DNS solution, one concludes that the Smagorinsky model recovers the general features of
the flow, but it is not diffusive enough in several areas and too diffusive in others.

The addition of the tensor-diffusivity subgrid model to the finite difference code will lead
to inherent instabilities in the solution. Negative values of the scalar function appear directly
after the start of the computation and lead to a blowup that is exponential in time. This is
undoubtedly due to the negative diffusion in the subgrid model. Figure 6 shows contourlines
att = 2 for a finite difference calculation (with a grid spacing of 0.03 and a step size of 0.005)
with the tensor-diffusivity subgrid model att = 2. The dashed contour-line is 0. Instabilities
appear first at the locations where the effects of negative diffusion are highest. Outside these
areas the solution is still good. A spectral method will lead to similar instabilities.

As noted earlier, we expect that the Lagrangian particle method will provide the required
regularization of the tensor diffusivity model. To implement the particle method, the filtered
initial condition is approximated by a sum of Gaussian particles that are initially axisym-
metric. In total, 6504 particles were used, each with a core size of 0.15 resulting in an
overlap parameter of 4.5. Numerical experiments show that if the core size is equal to or
slightly larger than the filtering constantσ , the remeshing scheme yields the best results.
Also, as discussed above, the core size must be larger than the filtering constantσ . Thus
initial condition has been used for all the Lagrangian calculations in this section.

The left column in Fig. 7 gives the solution using the particle method without the subgrid
model using anisotropic particles. The solution has not been remeshed. Time integration
was performed by the algorithm mentioned in the previous section. Fairly quickly after
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FIG. 5. Contour plots for filtered DNS solution (left column) and Smagorinsky subgrid model (right column).

FIG. 6. Contour plot using the tensor-diffusivity model in a finite difference calculation.
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FIG. 7. Contour plots for Lagrangian particle method using anisotropic particles and no subgrid model (left
column) and the tensor-diffusivity model (right column). No remeshing has been used.

the start of the computation, the solution starts to show differences from the filtered DNS
solution. The results after turning on the tensor-diffusivity model are depicted in the right
column of 7. Again no remeshing scheme was used. Up to aboutt = 3, this solution is in
good agreement with the filtered DNS one. The errors are due to the ever growing core size
and changing shape, the increased aspect ratio, and the separation of neighboring particles.
At t = 1, the maximum aspect ratio has increased to 1.6 and att = 4 to 107. At this time,
about 81% of the particles have an aspect ratio larger than 2, and 8% have one larger than
25. At t = 9, the maximum aspect ratio has increased until 365 and more than half of the
particles have an aspect ratio greater than 10.

The location of the anisotropic particles is given in Fig. 8 att = 9. Each line segment
represents a particle. The length of the segment is an indication of the aspect ratio and the
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FIG. 8. Direction and aspect ratio of anisotropic Gaussian particles att = 9, where the length is a measure
of the aspect ratio.

direction of the segment indicates the long axis (direction of the smallest eigenvalue) of the
particle. There are regions where the particles are stretched considerably, especially where
one of the velocity components is small. It can be inferred that particle paths can cross each
other. Even in a computation using a stationary velocity field, this is possible, since particles
that are located at the same position will not necessarily move in the same direction. This
depends on the shape of the particles.

To improve the accuracy of the solution, we next remesh the scalar field every unit of time.
Since the field spreads out over time, the total number of particles increases throughout the
computation. Starting with 6504 particles, the number reaches 18,745 particles att = 9.
The results are given in the left column of Fig. 9. Very good agreement between this solution
and the filtered DNS solution is obtained.

To see the effect of using a higher order particle method, the solution using axisymmetric
particles is plotted in the right column of Fig. 9. The solution was remeshed every time unit,
resulting in 20,520 particles att = 9. The use of axisymmetric particles leads to results
that are almost as good as when one uses anisotropic particles. Since the computation using
axisymmetric particles is significantly faster than using anisotropic particles (8 minutes
versus 36 minutes), they are the preferred choice based on computational efficiency.

Table II summarizes the seven different computational runs performed in this section. The
first column gives the run number, followed by the method used, where FD stands for finite
difference and Lagr for Lagrangian method. The model indicates if the computation was

TABLE II

Runs for the 2D-Flow Test Problem

Run Method Model No. Particles/Grid Points Remeshed CPU Time

1 FD DNS 800× 800 points — 24 hr
2 FD Smagorinsky 800× 800 points — 24 hr
3 FD TD 800× 800 points — —
4 Lagr No model 6504 particles no 12 min
5 Lagr TD—Anisotropic 6504 particles no 9 min
6 Lagr TD—Anisotropic 6504–21,593 particles yes 36 min
7 Lagr TD—Isotropic 6504–23,960 particles yes 8 min
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FIG. 9. Contour plots for anisotropic particles (left column) and axisymmetric particles (right column). The
solution has been remeshed every time unit.

DNS or used the Smagorinsky or tensor-diffusivity (TD) model. In the case of a Lagrangian
method, it also indicates if anisotropic or isotropic Gaussian particles were used. For the
finite difference method, the grid size is given and for the Lagrangian method the total
number of particles at the beginning of the run. The number of particles at the end of a run
is printed if it differs from the initial number. This is only the case if remeshing was used
as indicated in the remeshed column.
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The approximate CPU time on a Pentium 650 MHz processor is given. At first glance,
the Lagrangian appears to be about two orders of magnitude faster than the finite difference
calculations. However, note that the grid sizes also differ by two orders of magnitude. The
clear advantage of the particle method is that particles are only needed in areas where a
significant scalar quantity is present. No valuable computational time is lost in areas where
no scalar quantity is present.

5. CONCLUSIONS AND FUTURE RESEARCH

A new subgrid model was obtained by expanding the unknown variable in terms of an
infinite sum of known variables and truncating this series. The model was named the tensor-
diffusivity model and does not have any degrees of freedom. It was shown that the subgrid
model introduces negative diffusion in at least one spatial direction and is frame indifferent.

Anisotropic Gaussian particles were introduced and equations of motion were derived
using an expansion in Hermite polynomials. Equations for the widely used axisymmetric
Gaussian particles were obtained as well. To prevent particles from becoming too large, too
elliptical, or too widely separated in a particular direction, a remeshing scheme tailored to
the characteristics of the model has been implemented.

A stagnation flow can be solved exactly and was used to illustrate different aspects of
the subgrid model and the particle method. A simple two-dimensional incompressible flow
has been used to show that the particle method yields accurate results. Even for stationary
flows, path lines can cross. The particle method resulted in more accurate solutions than
those of the Smagorinsky subgrid model.

Both anisotropic and axisymmetric Gaussian particles can be used to obtain good re-
sults. Anisotropic particles do not have to be remeshed as often as axisymmetric particles,
but because of computational efficiency and better accuracy for the remeshing procedure,
axisymmetric particles are the preferred choice to use in this type of simulation.

Research is currently underway to apply the tensor-diffusivity model in three dimensions
on simple model flows as well as to more realistic flows such as decaying and forced homo-
geneous turbulence. For these flows, an exact velocity field is not known and interpolation
schemes are needed, adding to the cost of the model. Alternate schemes for regularization
and obtaining better solutions are being considered. In cases where the velocity field is fully
resolved, we found a novel method for the time evolution of the location of the particles,
which is currently being tested.

APPENDIX A

It will be shown that the filtered product̂f g is related to the filtered functionŝf andĝ
for a Gaussian filter as

f̂ g(x) =
∞∑

n=0

1

n!

(
σ 2

2

)n
∂n f̂

∂xi1∂xi2 · · · ∂xin

∂nĝ

∂xi1∂xi2 · · · ∂xin

, (A.1)

where a sum over repeated indices is implied andf (x) andg(x) are arbitrary functions in
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C∞. By definition,

f̂ g(x) = 1

(σ
√
π)d

∫
V

f (x′)g(x′) exp

(
−|x

′ − x|2
σ 2

)
dx′, (A.2)

whered is the spatial dimension and the integration is taken over the infinite spatial domain
V . For simplicity and without loss of generality, assume one spatial dimension. Expand
f (x′) in a series of Hermite polynomials asf (x′) =∑∞n=0 f̄n(x)Hn(

x′−x
σ
), whereHn is the

n-th Hermite polynomial and the coefficients̄f n(x) are given by

f̄ n(x) = 1

2nn!

1

σ
√
π

∞∫
−∞

f (x′) exp

(
− (x

′ − x)2

σ 2

)
Hn

(
x′ − x

σ

)
dx′. (A.3)

After partial integration of the right-hand siden times, we findf̄ n(x) = σ n

2nn!
∂n f̂ (x)
∂xn . Plugging

these results in (A.2) gives

f̂ g(x) =
∞∑

n=0

σ n

2nn!

∂n f̂ (x)

∂xn

∞∫
−∞

1

σ
√
π

g(x′) exp

(
− (x

′ − x)2

σ 2

)
Hn

(
x′ − x

σ

)
dx′. (A.4)

The integral on the right-hand side can be written, following (A.3), as 2nn!ḡn(x) to end up
with

f̂ g(x) =
∞∑

n=0

σ n

2nn!

∂n f̂ (x)

∂xn
2nn!ḡn(x) =

∞∑
n=0

σ n

2nn!

∂n f̂ (x)

∂xn
σ n ∂

nĝ(x)

∂xn
, (A.5)

which is the one-dimensional version of (A.1).

APPENDIX B

We want to solve the filtered advection–diffusion equation (5) by approximating the
unknown scalar fieldψ(x, t) by a sum ofN anisotropic Gaussian particles given by (10).
Time evolution equations for the shape matrixMk and the locationxk are derived by
expanding each term of (5) in a series of Hermite polynomials and setting the coefficients
of lower order powers to zero. Without loss of generality, only one particlek and two
dimensions are considered. In the principle coordinate system (ξ, η) of matrix Mk, this
particlek is given by

ψk(ξ, t) =
ak
√
λξλη

πδ2
k

exp

(
−λξ (ξ − ξk)

2+ λη(η − ηk)
2

δ2
k

)
, (B.1)

where (1, 0) and (0, 1) are the orthogonal unit eigenvectors corresponding to the eigenvalues
of Mk,λξ andλη, respectively. SetHm,n= H ξ

mHη
n = H ξ

m{[λξ (ξ − ξk)]/δk}Hη
n {[λη(η − ηk)]/

δk} whereHm is them-th Hermite polynomial. Introduce the diagonal matrixΛk with the
eigenvaluesλξ andλη as its elements. The filtered advection–diffusion equation (5) does not
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change due to the transformation except that all the derivatives are now taken with respect
to theξ coordinate. Hats on top of variables will be dropped.

The time derivative ofψk can be expressed in a sum of Hermite polynomialsHm,n as

∂ψk

∂t
=
[ d

dt [det(ΛK )]

det(Λk)
+ 2

δ2
k

dξT
k

dt
Λk(ξ − ξk)−

(ξ − ξk)
T

δ2
k

dΛk

dt
(ξ − ξk)

]
ψk

=
[
− 1

4λξ

dλξ
dt

H2,0− 1

4λη

dλη
dt

H0,2+
√
λξ

δk

dξk

dt
H1,0+

√
λη

δk

dηk

dt
H0,1

]
ψk, (B.2)

where the equality{ d
dt [det(A)]/det(A)} = d Ai j

dt (A
−1) j i , valid for any nonsingular matrix

A, has been used. The advection term (u ·∇ψ =∇ · uψ) can be expressed in a se-
ries of Hermite polynomials by first expanding the velocity field in an infinite series of
Hermite polynomials, followed by carrying out the gradient operator usingHn(x)e−x2 =
− d

dx [Hn−1(x) exp(−x2)],

u ·∇ψk =
∞∑

m,n=0

∇ · (ūm,n Hm,nψk) =
∞∑

m,n=0

ūm,n∇ · (Hm,nψk)

(B.3)

=
∞∑

m,n=0

[
−
√
λξ

δk
ūm,n Hm+1,n −

√
λη

δk
v̄m,n Hm,n+1

]
ψk,

where the functions̄um,n are defined by

ūm,n(ξk, t) =
√
λξλη

hmhnδ
2
k

∞∫
−∞

∞∫
−∞

exp

(
− (ξ − ξk)

TΛk(ξ − ξk)

δ2
k

)
u(ξ, t)Hm,n dξ dη, (B.4)

andhn = 2nn!
√
π . Note thatūm,n = O(δm+n

k ). The diffusion term can be written in terms
of Hermite polynomials as

κ∇2ψk =
[
−2κ

δ2
k

(3k)i i + 4κ

δ4
k

(ξ − ξk)
TΛkΛk(ξ − ξk)

]
ψk

=
[
κλξ

δ2
k

H2,0+ κλη
δ2

k

H0,2

]
ψk. (B.5)

Finally, consider the tensor-diffusivity term

−σ
2

2
Si j

∂2ψk

∂ξi ∂ξ j
= −σ

2

2

[
− 2

δ2
k

Si j3i j + 4

δ4
k

(ξ − ξk)
TΛkSΛk(ξ − ξk)

]
ψk

= −σ
2

2

[
λξ

δ2
k

∂u

∂ξ
H2,0+ λη

δ2
k

∂v

∂η
H0,2+

√
λξλη

δ2
k

(
∂u

∂η
+ ∂v
∂ξ

)
H1,1

]
ψk.

(B.6)
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After expressing the components of the strain rate tensor( ∂ui
∂ξ j
) in a series of Hermite

polynomials we end up with

− σ
2

2
Si j

∂2ψk

∂ξi ∂ξ j

=
∞∑

m,n=0

−σ
2

2

{√
λξλη

δ2
k

(
∂u

∂η
+ ∂v
∂ξ

)
m,n

(
H ξ

m+1+ 2mHξ
m−1

)(
Hη

n+1+ 2nHn
n−1

)

+ λξ
δ2

k

∂u

∂ξm,n
(Hm+2,n + 4mHm,n + 4m(m− 1)Hm−2,n)

+ λη
δ2

k

∂v

∂ηm,n
(Hm,n+2+ 4nHm,n + 4n(n− 1)Hm,n−2)

}
ψk. (B.7)

Next we will set the coefficients in front of the lower order Hermite polynomials equal
to zero. Owing to incompressibility, the coefficient ofH0,0 is automatically zero. Setting
the coefficients ofH1,0 andH0,1 equal to zero, we get

dξk

dt
= ū− σ

2

2

(
∂2u

∂ξ2
+ ∂

2u

∂η2

)
, (B.8)

dηk

dt
= v̄ − σ

2

2

(
∂2v

∂ξ2
+ ∂

2v

∂η2

)
, (B.9)

where the shortcut̄f = f̄ 0,0 has been introduced. Using partial integration, we can express
f̄ m,n in terms of derivatives off̄ . If we transform back to the original coordinate system
and combine both equations, we end up with (12). Setting the coefficients ofH2,0 andH0,2

equal to zero, we find

dλξ
dt
= −2λξ

∂u

∂ξ
− 4κ

λξλξ

δ2
k

+ 2σ 2

δ2
k

λξλξ
∂u

∂ξ
+ σ 2λξ

(
∂3u

∂ξ3
+ ∂3u

∂ξ∂η2

)
, (B.10a)

dλη
dt
= −2λη

∂v

∂η
− 4κ

ληλη

δ2
k

+ 2σ 2

δ2
k

ληλη
∂v

∂η
+ σ 2λη

(
∂3u

∂ξ2∂η
+ ∂

3v

∂η3

)
, (B.10b)

and forH1,1

0= −λξ ∂u

∂η
− λη ∂v

∂ξ
+ σ

2λξλη

δ2
k

(
∂u

∂η
+ ∂v
∂ξ

)

+ σ
2λξ

2

(
∂3u

∂ξ2∂η
+ ∂

3u

∂η3

)
+ σ

2λη

2

(
∂3v

∂ξ∂η2
+ ∂

3v

∂ξ3

)
. (B.11)

It is straightforward to check that if we combine the three equations above in matrix form,
we obtain

dΛk

dt
= −∇uΛk −Λk∇u

T − 4κ

δ2
k

ΛkΛk + 2
σ 2

σ 2
k

ΛkSΛk

+ σ
2

2
∇∇2uΛk + σ

2

2
Λk∇∇2u

T
. (B.12)

If we transform back to the original coordinate system, we get (14).
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APPENDIX C

Without loss of generality, Eq. (16) will be derived in one dimension, using the same
notation as in Section 3.2. Define the errorε(x) of the approximation between the old and
the new scalar fields as the difference between both fields,

ε(x) =
N∑

k=1

ak
√

det(λk)√
πδk

exp

(
−λk(x − xk)

2

δ2
k

)
−

M∑
l=1

bl√
πτ

exp

(
− (x − ξl )

2

τ 2

)
, (C.1)

where the shape matrixMk has been replaced byλk, the eigenvalue (and only element) of
Mk. We will use the least-square-error approximation, which results in a linear system of
M equations for the unknownbl ’s, where thei -th equation is given by

M∑
l=1

bl√
2

exp

(
− (ξl − ξi )

2

2τ 2

)

=
N∑

k=1

∞∫
−∞

ak
√
λk√

πδk
exp

(
−λk(x′ − xk)

2

δ2
k

)
exp

(
− (x

′ − ξi )
2

τ 2

)
dx′. (C.2)

Express the first exponential on the right-hand side as

exp

(
−λk(x′ − xk)

2

δ2
k

)

=
∞∫
−∞

1√
π
√
δ2

k − λkτ 2
exp

(
− (x

′ − xk − x̂)2

τ 2

)
exp

(
− λkx̂2

δ2
k − λkτ 2

)
dx̂, (C.3)

which is only possible forτ 2 <
δ2

k
λk

for all k. This puts an upper bound on the new core size
of the particles. Substituting in (C.2), carrying out the integration overx′, and replacinĝx
by x′ − xk, we have

M∑
l=1

bl√
2

exp

(
− (ξl − ξi )

2

2τ 2

)

=
N∑

k=1

∞∫
−∞

ak
√
λk√

2π
√
δ2

k − λkτ 2
exp

(
−λk(x′ − xk)

2

δ2
k − λkτ 2

)
exp

(
− (x

′ − ξi )
2

2τ 2

)
dx′. (C.4)

The last exponential on the right-hand side is now approximated as

exp

(
− (x

′ − ξi )
2

2τ 2

)
≈

M∑
l=1

m(x′ − ξl ) exp

(
− (ξl − ξi )

2

2τ 2

)
, (C.5)

where the functionm(x) has to be chosen. See for example Cottet and Koumoutsakos [18]
for a discussion of possible choices. After substitution of this equation in (C.4), we have
on both sides of the equation a sum over the set of new particles, and we find the following
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explicit expressions for the unknown coefficientsbl ’s:

bl =
N∑

k=1

∞∫
−∞

ak
√
λk√

π
√
δ2

k − λkτ 2
exp

(
−λk(x′ − xk)

2

δ2
k − λkτ 2

)
m(x′ − ξl ) dx′. (C.6)

We have found that the simplest possible choice,m(x) = δ(x)h, whereδ(x) is the Dirac
delta function, gives very good results. Equation (C.6) then reduces to

bl =
N∑

k=1

ak
√
λk√

π
√
δ2

k − λkτ 2
exp

(
−λk(xl − xk)

2

δ2
k − λkτ 2

)
h. (C.7)

In case ofd spatial dimensions, the expressions for the new amplitudes are obtained by
multiplying (C.7)d times in the principle coordinate system of the shape matrixMk for each
particlek, before transforming back to the orginal coordinate system. In two dimensions,
we obtain (16).
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